An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces
نویسندگان
چکیده
We present an adaptive finite element method for approximating solutions to the Laplace-Beltrami equation on surfaces in R3 which may be implicitly represented as level sets of smooth functions. Residual-type a posteriori error bounds which show that the error may be split into a “residual part” and a “geometric part” are established. In addition, implementation issues are discussed and several computational examples are given.
منابع مشابه
Application of Adaptive Finite Element Method for Elliptic Partial Differential Equations to the Laplace Beltrami Operator on Graphs
The Laplace Beltrami operator, known as an elliptic operator for functions defined on surfaces, appears in some applications in sciences and engineerings. In this paper we consider the Laplace Beltrami operator ∆Γ on surfaces Γ defined as graphs of C2 functions on a flat domain Ω ⊂ Rd−1 (d ≥ 2), ∆Γu = f on Γ, u = 0 on ∂Γ. Based on some properties of differential geometry, we transformed the Lap...
متن کاملL2 and pointwise a posteriori error estimates for FEM for elliptic PDEs on surfaces
Surface Finite Element Methods (SFEM) are widely used to solve surface partial differential equations arising in applications including crystal growth, fluid mechanics and computer graphics. A posteriori error estimators are computable measures of the error and are used to implement adaptive mesh refinement. Previous studies of a posteriori error estimation in SFEM have mainly focused on boundi...
متن کاملSonderforschungsbereich 393 Parallele Numerische Simulation für Physik und Kontinuumsmechanik
SFB393/05-01 January 2005 Abstract The Laplace-Beltrami operator corresponds to the Laplace operator on curved surfaces. In this paper, we consider an eigenvalue problem for the Laplace-Beltrami operator on subdomains of the unit sphere in R. We develop a residual a posteriori error estimator for the eigenpairs and derive a reliable estimate for the eigenvalues. A global parametrization of the ...
متن کاملConvergence of Adaptive Finite Element Methods
Title of dissertation: CONVERGENCE OF ADAPTIVE FINITE ELEMENT METHODS Khamron Mekchay, Doctor of Philosophy, 2005 Dissertation directed by: Professor Ricardo H. Nochetto Department of Mathematics We develop adaptive finite element methods (AFEMs) for elliptic problems, and prove their convergence, based on ideas introduced by Dörfler [7], and Morin, Nochetto, and Siebert [15, 16]. We first stud...
متن کاملAnalysis of the Finite Element Method for the Laplace–Beltrami Equation on Surfaces with Regions of High Curvature Using Graded Meshes
We derive error estimates for the piecewise linear finite element approximation of the Laplace–Beltrami operator on a bounded, orientable, C3, surface without boundary on general shape regular meshes. As an application, we consider a problem where the domain is split into two regions: one which has relatively high curvature and one that has low curvature. Using a graded mesh we prove error esti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 45 شماره
صفحات -
تاریخ انتشار 2007